Abstract
In this paper, quasi-static fatigue crack growth simulations of homogeneous and bi-material interfacial cracks have been performed using element free Galerkin method (EFGM) under mechanical as well as thermo-elastic load. The thermo-elastic fracture problem is decoupled into thermal and elastic problems. The temperature distribution obtained by solving heat conduction equation is used as input in the elastic problem to get the displacement and stress fields. Discontinuities in the temperature and displacement fields are captured by extrinsic partition of unity enrichment technique. The values of stress intensity factors have been extracted from the EFGM solution by domain based interaction integral approach. The standard Paris fatigue crack growth law has been implemented for the life estimation of various model problems. The results obtained by EFGM under mechanical and thermo-elastic loads were compared with those obtained by FEM using remeshing approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.