Abstract
Fatigue crack growth in NR/BR compound and the effect of two different types of recycled rubber powder (RRP) i.e. micronized cryo-ground 74 μm and ambient-ground 400 μm were studied using fracture mechanics approach. Absolute and relative hysteresis losses using single-edge notch tensile (SENT) specimens were determined with a displacement-controlled strain compensating for permanent set of the samples throughout the Fatigue Crack Growth (FCG) experiments. Results indicated a correlation between absolute/relative hysteresis loss and fatigue crack growth rate under specific dynamic strain amplitudes. Differences in relative hysteresis loss showed that additional energy dissipation, due to multiple new crack surfaces at the crack tip, contributes to the FCG of the RRP compounds. At higher tearing energy, beside other factors affecting the FCG performance of the RRP compounds, both higher absolute and relative hysteresis loss are slightly detrimental to the crack growth rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.