Abstract

Fatigue crack growth tests with R=0 and 0.4 were carried out on Fe-22Mn-0.6C and Fe-22Mn-0.6C-3Al (wt.%) Twinning-Induced Plasticity (TWIP) steels with stacking fault energies around 21.5 and 37mJ/m2, respectively. The former exhibits more crack closure effects, partly due to stronger asperity-induced closure. Strain-controlled push-pull tests followed by scanning electron microscope observations show that both steels are prone to mechanical twinning under low-cycle fatigue, associated with an increasing kinematic hardening. Twinning is however more profuse in Fe-22Mn-0.6C steel. Elastic-plastic finite elements simulations of crack growth, using specific constitutive equations able to capture the increasing kinematic hardening suggest that plasticity-induced crack closure is lower in Fe-22Mn-0.6C steel. Even after closure corrections, the Al-free steel, exhibits a lower resistance to fatigue crack growth, which is attributed to a pronounced strain localisation at the crack tip, and maybe also to environment effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.