Abstract
The effect of cyclic loading on fatigue crack growth in plastically compressible solids is investigated at negative stress ratio under plane strain and small scale yielding conditions. The material is characterized by a finite strain elastic viscoplastic constitutive model with hardening and hardening-softening-hardening hardness functions. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The plastic crack growth, crack tip opening displacement (CTOD) and near crack tip stress fields are presented using finite element method. Material hardening/ softening has a major relevance on crack growth, CTOD and the evolution of stress distribution. It is revealed here that the negative stress ratio can significantly influence the loading conditions at the crack tip and thereby increase the crack growth for tension–compression loading for hardening material whereas the fatigue crack growth of plastically compressible hardening-softening-hardening material is only slightly affected by the negative stress ratio albeit it is accepted in literature that compressive loads contribute to fatigue crack growth significantly. In the present studies, the CTOD variation with applied load and the near stress distribution are also very unusual in nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.