Abstract

Laser shock processing (LSP) is a surface modification technique aimed at enhancing the resistance to wear, corrosion and fatigue of structural alloys. Recently, LSP without coating (LSPwC) has been gaining ground, using lasers with lower energies, shorter pulse duration, smaller laser spots and higher surface coverage per shot. In the present work, LSPwC treatment was performed in both sides of pre-cracked compact tension specimens of aluminum alloy 2024-T3. A pulsed (9 ns) Nd:YAG laser system operating in the second harmonic (532 nm) at 10 Hz repetition rate and with pulse energy of about 270 mJ was positioned with a 500 mm focal distance lens in order to conduct LSPwC with an estimated power density of 5.2 GW/cm2 and two distinct overlapping rates: 50% and 75%. The objective of the work was to investigate the effect of the LSPwC and cyclic load condition on the crack closure and fatigue crack growth (FCG) behavior shown by the samples. Constant amplitude FCG tests were performed with two distinct load ratios: R = 0.2 and R = 0.5. A small increase in the crack closure loads (Pcl ≈ 1.1-1.2 Pmin) and in the number of cycles to crack propagation was evinced for the specimens tested at R = 0.2 compared to the untreated ones, whereas negligible effect was observed in the R = 0.5 tests. Besides, the obtained results indicate that the increase in overlapping rate is not effective for the adopted LSPwC conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.