Abstract

Double cantilever beam joints were used to investigate cohesive and interlaminar crack growth in bonded composite joints under constant and variable amplitude (VA) loading. Numerical crack growth integration was used to predict the VA fatigue life using constant amplitude data. This underestimated the fatigue crack growth rate for interlaminar cracks, indicating crack growth acceleration due to load interactions. This was also the case for cohesive cracks subjected to a moderate initial strain energy release rate (Gmax). An unstable crack growth regime was also identified for the case of high initial Gmax cohesive crack propagation. This behaviour is attributed to the development of a damage zone ahead of the crack tip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.