Abstract

Experimental studies of fatigue crack growth in aluminium alloys have shown that, at the low-to-mid stress intensity factor range, there is often a log-linear relationship between the crack length and the fatigue life. These observations have led to the development of the generalised Frost–Dugdale crack growth law, which allowed the accurate prediction of fatigue crack growth from Region I. For this research paper the ‘generalised Frost–Dugdale’ law was used to perform an optimisation study of 7050-T7451 Aluminium structures. The structural optimisation procedure proposed integrates geometrical modelling, structural analysis and optimization into one complete and automated computer-aided design process. The results from the structural optimisation study compared the ‘generalised Frost–Dugdale’ law and the traditional Paris law. Gradient-less, gradient-based optimisation algorithm and an enumeration scheme were considered in this investigation. The enumeration scheme takes advantage of a cluster computer architecture which enables a visualisation of the solution space allowing verification and validation of the optimisation algorithm. The results indicated that the optimal geometrical shape and predicted fatigue life depended on the crack sizes, structural geometry, boundary conditions and fatigue crack growth law. As a result, this procedure illustrates that for the design of light weight structures, a fatigue based optimisation used in conjunction with visualisation of the solution space may provide a viable design methodology. The importance of non-destructive inspection (NDI) and its role in determining optimal structural geometries is also revealed. Furthermore, the possibility of the application of the generalised Frost–Dugdale model in design optimisation has been demonstrated. This procedure has the potential to be applied to structures with complex structural configurations taking into account crack propagation in Region I.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call