Abstract
We assessed the effect of short-term feeding of genetically modified (GM: Bt MON810) maize on immune responses and growth in weanling pigs and determined the fate of the transgenic DNA and protein in-vivo. Pigs were fed a diet containing 38.9% GM or non-GM isogenic parent line maize for 31 days. We observed that IL-12 and IFNγ production from mitogenic stimulated peripheral blood mononuclear cells decreased (P<0.10) following 31 days of GM maize exposure. While Cry1Ab-specific IgG and IgA were not detected in the plasma of GM maize-fed pigs, the detection of the cry1Ab gene and protein was limited to the gastrointestinal digesta and was not found in the kidneys, liver, spleen, muscle, heart or blood. Feeding GM maize to weanling pigs had no effect on growth performance or body weight. IL-6 and IL-4 production from isolated splenocytes were increased (P<0.05) in response to feeding GM maize while the proportion of CD4+ T cells in the spleen decreased. In the ileum, the proportion of B cells and macrophages decreased while the proportion of CD4+ T cells increased in GM maize-fed pigs. IL-8 and IL-4 production from isolated intraepithelial and lamina propria lymphocytes were also increased (P<0.05) in response to feeding GM maize. In conclusion, there was no evidence of cry1Ab gene or protein translocation to the organs and blood of weaning pigs. The growth of pigs was not affected by feeding GM maize. Alterations in immune responses were detected; however, their biologic relevance is questionable.
Highlights
Worldwide, the inclusion of genetically modified (GM) plants in animal feed and for human consumption has consistently increased over the past fifteen years since they were first cultivated in 1996 [1]
The cry1Ab gene was detected in the GM maize but was not found in the non-GM maize analyzed (Fig. 1) which indicates that the level of cry1Ab gene contamination of the non-GM maize was too low to be detected by non-quantitative PCR
We observed a similar decrease in CD4+ T cells and B cells in the spleen and ileum, respectively, when Bt (MON810) maize was feed to weanling pigs for 35 days post-weaning
Summary
The inclusion of genetically modified (GM) plants in animal feed and for human consumption has consistently increased over the past fifteen years since they were first cultivated in 1996 [1]. The increased usage of GM crops for direct human consumption and feeding to meat- and milk-producing animals has lead to public concern. Consumer concerns are mostly related to a perceived risk to health, allergenicity of the transgenic proteins or the transfer of recombinant DNA from feed to livestock and livestock derived products that are consumed by humans [5]. Other concerns are associated with environmental issues such as gene transfer from GM crops to indigenous plants, reducing biodiversity and influence of the GM crops on non-target species [6,7,8,9]. Much greater resistance to food biotechnology exists in Europe compared to other parts of the world [10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.