Abstract

In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS–repressed locus is the bgl (aryl-β,D-glucoside) operon of E. coli. This locus is “cryptic,” as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli.

Highlights

  • The species Escherichia coli includes commensal strains residing in the intestine of humans and animals, as well as pathogenic strains causing various intestinal and extra-intestinal infections

  • The bgl operon of E. coli is a classical example of a locus which is repressed by H-NS, and is often referred to as being cryptic, since no laboratory conditions are known which induce its expression

  • We have shown that the evolution and functional state of the bgl operon is tightly coupled to the phylogeny of E. coli

Read more

Summary

Introduction

The species Escherichia coli includes commensal strains residing in the intestine of humans and animals, as well as pathogenic strains causing various intestinal and extra-intestinal infections. This diversity in the life-style of E. coli is based on a significant genetic variability of their genomes. E. coli strains have been identified, which form a second population distinct from the main E. coli population with its 4 phylogenetic groups. These rare strains presumably represent descendents of a subpopulation that diverged early in evolution of E. coli, prior to the generation of the 4 ‘modern’ phylogenetic groups A, B1, B2, and D [8,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call