Abstract

Plasma instabilities can play a fundamental role in plasma equilibration. There are similarities and differences between plasma instabilities in Abelian and non-Abelian gauge theories. In particular, it has been an open question whether non-Abelian self-interactions are the limiting factor in the growth of non-Abelian plasma instabilities. We study this problem with 3+1 dimensional numerical simulations. We find that non-Abelian plasma instabilities behave very differently from Abelian ones once they grow to be nonperturbatively large, in contrast with earlier results of 1+1 dimensional simulations. In particular, they grow more slowly at late times, with linear rather than exponential dependence of magnetic energy on time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call