Abstract

Following an incident involving a release of Bacillus anthracis spores or other biological threat agent into the outdoor environment, understanding the factors that may affect the bioagent's fate and transport can help predict viable contaminant spread via the ambient air. This article provides scientific data for the first time on ambient air concentrations of bacterial spores over time and location during different phases of a field test in which Bacillus atrophaeus (surrogate for B. anthracis) spores were released outdoors as part of a full-scale study on sampling and decontamination in an urban environment. This study advances the knowledge related to the fate and transport of bacterial spores (such as those causing anthrax disease) as an aerosol in the outdoor environment over the course of three weeks in a mock urban environment and has exposure and health risk implications. The highest spore air concentrations occurred at the beginning of the study (e.g. during inoculation of surfaces and characterization sampling), and in the downwind direction, but diminished over time; few B. atrophaeus spores were detected in the air after several weeks and following decontamination. Therefore, in an actual incident, potential reaerosolization of the microorganism and subsequent transport in the air during surface sampling and remediation efforts should be considered for determining exclusion zone locations and estimating potential risk to neighboring communities. The data also provide evidence suggesting that the large-scale decontamination of outdoor surfaces may reduce air concentrations of the bioagent, which is important since exposure of B. anthracis via inhalation is a primary concern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call