Abstract

We previously reported that lipid rafts are involved in long-chain fatty acid (LCFA) uptake in 3T3-L1 adipocytes. The present data show that LCFA uptake does not depend on caveolae endocytosis because expression of a dominant negative mutant of dynamin had no effect on uptake of [3H]oleic acid, whereas it effectively prevented endocytosis of cholera toxin. Isolation of detergent-resistant membranes (DRMs) from 3T3-L1 cell homogenates revealed that FAT/CD36 was expressed in both DRMs and detergent-soluble membranes (DSMs), whereas FATP1 and FATP4 were present only in DSMs but not DRMs. Disruption of lipid rafts by cyclodextrin and specific inhibition of FAT/CD36 by sulfo-N-succinimidyl oleate (SSO) significantly decreased uptake of [3H]oleic acid, but simultaneous treatment had no additional or synergistic effects, suggesting that both treatments target the same mechanism. Indeed, subcellular fractionation demonstrated that plasma membrane fatty acid translocase (FAT/CD36) is exclusively located in lipid rafts, whereas intracellular FAT/CD36 cofractionated with DSMs. Binding assays confirmed that [3H]SSO predominantly binds to FAT/CD36 within plasma membrane DRMs. In conclusion, our data strongly suggest that FAT/CD36 mediates raft-dependent LCFA uptake. Plasma membrane lipid rafts might control LCFA uptake by regulating surface availability of FAT/CD36.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.