Abstract
Rolling shutter effect commonly exists in a video camera or a mobile phone equipped with a complementary metal-oxide semiconductor sensor, caused by a row-by-row exposure mechanism. As video resolution in both spatial and temporal domains increases dramatically, removing rolling shutter effect fast and effectively becomes a challenging problem, especially for devices with limited hardware resources. We propose a fast method to compensate rolling shutter effect, which uses a piecewise quadratic function to approximate a camera trajectory. The duration of a quadratic function in each segment is equal to one frame (or half-frame), and each quadratic function is described by an initial velocity and a constant acceleration. The velocity and acceleration of each segment are estimated using only a few global (or semiglobal) motion vectors, which can be simply predicted from fast motion estimation algorithms. Then geometric image distortion at each scanline is inferred from the predicted camera trajectory for compensation. Experimental results on mobile phones with full-HD video demonstrate that our method can not only be implemented in real time, but also achieve satisfactory visual quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.