Abstract
An exact method of correcting the rolling shutter (RS) effect requires recovering the underlying geometry, i.e. the scene structures and the camera motions between scanlines or between views. However, the multiple-view geometry for RS cameras is much more complicated than its global shutter (GS) counterpart, with various degeneracies. In this paper, we first make a theoretical contribution by showing that RS two-view geometry is degenerate in the case of pure translational camera motion. In view of the complex RS geometry, we then propose a Convolutional Neural Network (CNN)-based method which learns the underlying geometry (camera motion and scene structure) from just a single RS image and perform RS image correction. We call our method structure-and-motion-aware RS correction because it reasons about the concealed motions between the scanlines as well as the scene structure. Our method learns from a large-scale dataset synthesized in a geometrically meaningful way where the RS effect is generated in a manner consistent with the camera motion and scene structure. In extensive experiments, our method achieves superior performance compared to other state-of-the-art methods for single image RS correction and subsequent Structure from Motion (SfM) applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.