Abstract
As a fundamental concept in information theory, mutual information (MI) has been commonly applied to quantify association between random vectors. Most existing nonparametric estimators of MI have unstable statistical performance since they involve parameter tuning. We develop a consistent and powerful estimator, called fastMI, that does not incur any parameter tuning. Based on a copula formulation, fastMI estimates MI by leveraging Fast Fourier transform-based estimation of the underlying density. Extensive simulation studies reveal that fastMI outperforms state-of-the-art estimators with improved estimation accuracy and reduced run time for large data sets. fastMI provides a powerful test for independence that exhibits satisfactory type I error control. Anticipating that it will be a powerful tool in estimating mutual information in a broad range of data, we develop an R package fastMI for broader dissemination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.