Abstract
We give a linear-time algorithm for single-source shortest paths in planar graphs with nonnegative edge-lengths. Our algorithm also yields a linear-time algorithm for maximum flow in a planar graph with the source and sink on the same face. For the case where negative edge-lengths are allowed, we give an algorithm requiringO(n4/3log(nL)) time, whereLis the absolute value of the most negative length. This algorithm can be used to obtain similar bounds for computing a feasible flow in a planar network, for finding a perfect matching in a planar bipartite graph, and for finding a maximum flow in a planar graph when the source and sink are not on the same face. We also give parallel and dynamic versions of these algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.