Abstract

In the typical model, a discrete-time coined quantum walk searching the 2D grid for a marked vertex achieves a success probability of $O(1/\log N)$ in $O(\sqrt{N \log N})$ steps, which with amplitude amplification yields an overall runtime of $O(\sqrt{N} \log N)$. We show that making the quantum walk lackadaisical or lazy by adding a self-loop of weight $4/N$ to each vertex speeds up the search, causing the success probability to reach a constant near $1$ in $O(\sqrt{N \log N})$ steps, thus yielding an $O(\sqrt{\log N})$ improvement over the typical, loopless algorithm. This improved runtime matches the best known quantum algorithms for this search problem. Our results are based on numerical simulations since the algorithm is not an instance of the abstract search algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.