Abstract
Electroencephalogram (EEG) data are typically contaminated with artifacts (e.g., by eye movements). The effect of artifacts can be attenuated by deleting data with amplitudes over a certain value, for example. Independent component analysis (ICA) separates EEG data into neural activity and artifact; once identified, artifactual components can be deleted from the data. Often, artifact rejection algorithms require supervision (e.g., training using canonical artifacts). Many artifact rejection methods are time consuming when applied to high-density EEG data. We describe FASTER (Fully Automated Statistical Thresholding for EEG artifact Rejection). Parameters were estimated for various aspects of data (e.g., channel variance) in both the EEG time series and in the independent components of the EEG: outliers were detected and removed. FASTER was tested on both simulated EEG ( n = 47) and real EEG ( n = 47) data on 128-, 64-, and 32-scalp electrode arrays. FASTER was compared to supervised artifact detection by experts and to a variant of the Statistical Control for Dense Arrays of Sensors (SCADS) method. FASTER had >90% sensitivity and specificity for detection of contaminated channels, eye movement and EMG artifacts, linear trends and white noise. FASTER generally had >60% sensitivity and specificity for detection of contaminated epochs, vs. 0.15% for SCADS. FASTER also aggregates the ERP across subject datasets, and detects outlier datasets. The variance in the ERP baseline, a measure of noise, was significantly lower for FASTER than either the supervised or SCADS methods. ERP amplitude did not differ significantly between FASTER and the supervised approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.