Abstract
Real-time processing of images and videos is becoming considerably crucial in modern applications of machine learning (ML) and deep neural networks. Having a faster and compressed floating point arithmetic can significantly increase the performance of such applications optimizing memory occupation and transfer of information. In this field, the novel posit number system is very promising. In this paper we exploit posit numbers to evaluate the performance of several machine learning algorithms in real-time image and video processing applications. Future steps will involve further hardware accelerations for native posit operations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have