Abstract

Using electric fields to initiate the process of physical aging has facilitated measurements of structural recovery dynamics on the time scale of milliseconds. This, however, complicates the interesting comparison with aging processes due to a temperature jump, as these are significantly slower. This study takes a step toward comparing the results of field and temperature perturbations by providing data on field-induced structural recovery of vinyl ethylene carbonate at two different time scales: 1.0ms at 181K and 33s at 169K, i.e., 4.5 decades apart. It is found that structural recovery is a factor of two slower than structural relaxation in equilibrium, with the latter determined via dielectric relaxation in the limit of linear response. The relation between recovery and relaxation dynamics remains temperature invariant across the present experimental range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.