Abstract

We compare structural relaxation and structural recovery dynamics for molecular glass-formers, both measured by dielectric techniques in the regime of linear responses. It is emphasized that structural recovery restores ergodicity, whereas structural relaxation or α-processes characterize fluctuations of the system in equilibrium (and thus do not involve a change of structure within experimental resolution). Evidence is provided that structural recovery is linked to rate exchange and thus is distinct from structural relaxation dynamics, even in the limit of small perturbations. As a consequence, structural recovery is somewhat slower and more exponential than the equilibrium dynamics as derived, for instance, from low field dielectric relaxation experiments. This contrasts the standard assumption inherent in models of physical aging, which assume the identity of both responses if measured in the limit of a small perturbation. Typical experiments associated with physical aging and scanning calorimetry involve nonlinear responses and are thus even more complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call