Abstract
Corpus cavernosum smooth muscle (CCSM) exhibits phasic contractions that are coordinated by ion channels. Mouse models are commonly used to study erectile dysfunction, but there are few published electrophysiological studies of mouse CCSM. We describe the voltage-dependent sodium (NaV ) currents in mouse CCSM and investigate their function. We used electrophysiological, pharmacological and immunocytochemical methods to study the NaV currents in isolated CCSM cells from C57BL/6 mice. Tension measurements were carried out using crural sections of the corpus cavernosum in whole tissue. Fast, voltage-dependent, sodium currents in mouse CCSM were induced by depolarising steps. Steady-state activation and inactivation curves revealed a window current between -60 and -30 mV. Two populations of NaV currents, 'TTX-sensitive' and 'TTX-insensitive', were identified. TTX-sensitive currents showed 48% block with the NaV channel subtype-specific blockers ICA-121431 (NaV 1.1-1.3), PF-05089771 (NaV 1.7) and 4,9-anhydro-TTX (NaV 1.6). TTX-insensitive currents were resistant to blockade by A803467, specific for NaV 1.8 channels. Immunocytochemistry confirmed expression of NaV 1.5 and NaV 1.4 in freshly dispersed CCSM cells. Veratridine, a NaV channel activator, reduced time-dependent inactivation of NaV currents and increased duration of evoked action potentials. Veratridine induced phasic contractions in CCSM strips, reversible with TTX and nifedipine but not KB-R7943. There are fast, voltage-dependent, sodium currents in mouse CCSM. Stimulation of these currents increased contractility of CCSM in vitro, suggesting an involvement in detumescence and potentially providing a clinically relevant target in erectile dysfunction. Further work will be necessary to define its role.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.