Abstract

Visual Tracking by now has gained much provenience among researchers in recent years due to its vast variety of applications that occur in daily life. Various applications of visual tracking include counting of cars on a high way, analyzing the crowd intensity in a concert or a football ground or a surveillance camera tracking a single person to track its movements. Various techniques have been proposed and implemented in this research domain where researchers have analyzed various parameters. Still this area has a lot to offer. There are two common approaches that are currently deployed in visual tracking. One is discriminative tracking and the other one is generative tracking. Discriminative tracking requires a pre-trained model that requires the learning of the data and solves the object recognition as a binary classification problem. On the other hand, generative model in tracking makes use of the previous states so that next state can be predicted. In this paper, a novel tacking based on generative tracking method is proposed called as Illumination Inavariant Spatio Temporal Tracker (IISTC). The proposed technique takes into account of the nearby surrounding regions and performs context learning so that the state of the object under consideration and its surrounding regions can be estimated in the next frame. The learning model is deployed both in the spatial domain as well as the temporal domain. Spatial domain part of the tracker takes into consideration the nearby pixels in a frame while the temporal model takes account of the possible change of object location. The proposed tracker was tested on a set of 50 images against other state of the art four trackers. Experimental results reveal that our proposed tracker performs reasonably well as compared with other trackers. The proposed visual tracker is both efficiently with respect to computation power as well as accuracy. The proposed tracker takes only 4 fast Fourier transform computations thus making it reasonably faster. The proposed trackers perform exceptionally well when there is a sudden change in back ground illumination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.