Abstract
ABSTRACTWe propose an algorithm, which we call ‘Fast Value Iteration’ (FVI), to compute the value function of a deterministic infinite-horizon dynamic programming problem in discrete time. FVI is an efficient algorithm applicable to a class of multidimensional dynamic programming problems with concave return (or convex cost) functions and linear constraints. In this algorithm, a sequence of functions is generated starting from the zero function by repeatedly applying a simple algebraic rule involving the Legendre-Fenchel transform of the return function. The resulting sequence is guaranteed to converge, and the Legendre-Fenchel transform of the limiting function coincides with the value function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.