Abstract
We consider infinite-horizon deterministic dynamic programming problems in discrete time. We show that the value function of such a problem is always a fixed point of a modified version of the Bellman operator. We also show that value iteration converges increasingly to the value function if the initial function is dominated by the value function, is mapped upward by the modified Bellman operator and satisfies a transversality-like condition. These results require no assumption except for the general framework of infinite-horizon deterministic dynamic programming. As an application, we show that the value function can be approximated by computing the value function of an unconstrained version of the problem with the constraint replaced by a penalty function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.