Abstract
In this article, we propose a spatial two-grid finite element algorithm combined with a shifted convolution quadrature (SCQ) formula for solving the fractional Klein-Gordon equation. The time direction at tn − θ is approximated utilizing a second-order SCQ formula, where θ is an arbitrary constant. The spatial discretization is performed using a two-grid finite element method involving three steps: calculating the numerical solution by solving a nonlinear system iteratively on the coarse grid, obtaining the interpolation solution based on the computed solutions in the first step, and solving a linear finite element system on the fine grid. We present a numerical algorithm, validate the two-grid finite element method’s effectiveness, and demonstrate the computational efficiency for our method by the comparison of the computing results between the two-grid finite element method and the standard finite element method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.