Abstract

This paper presents a current-steering approach to implement a fast transient response low-dropout regulator (LDO) based on a current feedback amplifier (CFA) topology. The circuit does not require any internal compensation capacitor, being stable for a wide range of output load currents [0–100mA] and a 1μF output capacitor. The CFA consists of an open-loop voltage follower with output local current–current feedback based on a level-shifted flipped voltage follower (LSFVF) which is instrumental to achieve high regulation and fast transient response. The inverting output buffer stage of the CFA together with current-mirror-based driving of the power pass transistor results in high PSRR. Post-layout simulation results for a 0.35μm CMOS process design reveal that the proposed LDO requires 59μA quiescent current at no-load condition and at full-load condition has a current efficiency of 99.8%. For a 1μF output capacitor, the maximum output voltage variation to a 0–100mA load transient with rise and fall times of 10 and 100ns is only 3mV, and the PSRR is smaller than −56dB over the entire load current range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.