Abstract

This paper studies a minimum-time trajectory planning problem under radar detection, where a Dubins vehicle aims to approach a target under a limited probability of being detected. Since the probability is accumulated along the vehicle’s trajectory in an integral form, we have to address a non-convex constrained functional optimization problem. To this end, Pontryagin’s minimum principle is adopted to derive the optimality conditions, based on which we obtain a set of parameterized trajectories that contain all optimal ones. By leveraging the design of intermediate points, fast algorithms are proposed to approximately compute a minimum-time trajectory among the set. Simulations are performed to validate the effectiveness and efficiency of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.