Abstract
BackgroundMonoclonal antibodies (mAbs) are essential tools in biological research, diagnosis and therapy, and are conventionally produced in murine hybridoma cell lines. Professional applications of mAbs depend on the steady supply of material. Because hybridoma cultures can stop producing the antibody or even die, preservation of the unique epitope specificity of mAbs by rescue of the sequences encoding the antibody variable domains (V regions) is important. The availability of these sequences enables not only the recombinant expression of the original antibody for further applications, but opens the road for antibody engineering towards innovative diagnostic or therapeutic applications. A time- and cost-efficient production system enabling the detailed analysis of the antibodies is an essential requirement in this context.MethodsSequences were rescued from three hybridoma cell lines, subjected to sequence analysis, subcloned into binary expression vectors and recombinantly expressed as chimeric mAb (constant regions of human IgG1:k1) in Nicotiana benthamiana plants. The properties of the recombinant and the murine mAbs were compared using competition enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. The recognition of native PfMSP4 by the recombinant mAb was analysed by immunofluorescence staining of Pf 3D7A schizonts and by western blot analysis of merozoite extract.ResultsThe rescued sequences of all three hybridoma cell lines were identical. The recombinant mAb was successfully expressed as IgG in plants at moderate levels (45 mg/kg fresh leaf weight). Preservation of the original epitope was demonstrated in a competition ELISA, using recombinant mAb and the three murine mAbs. EGF_PfMSP4-specific affinities were determined by SPR spectroscopy to 8 nM and 10 nM for the murine or recombinant mAb, respectively. Binding to parasite PfMSP4 was confirmed in an immunofluorescence assay showing a characteristic staining pattern and by western blot analysis using merozoite extract.ConclusionsAs demonstrated by the example of an EGF_PfMSP4-specific antibody, the described combination of a simple and efficient hybridoma antibody cloning approach with the flexible, robust and cost-efficient transient expression system suitable to rapidly produce mg-amounts of functional recombinant antibodies provides an attractive method for the generation of mAbs and their derivatives as research tool, novel therapeutics or diagnostics.
Highlights
Monoclonal antibodies are essential tools in biological research, diagnosis and therapy, and are conventionally produced in murine hybridoma cell lines
Hybridoma cultures can become unstable over time, and antibody expression declines or ceases all together [3,4], meaning that the information encoded in the variable regions (V regions) must be rescued to preserve a given antibody’s unique epitope specificity and affinity
V-region rescue and sequence identification Total RNA was isolated from the three selected EGF_PfMSP4-specific hybridoma clones, and first-strand complementary DNA (cDNA) synthesized using oligo-dT primers was used for the specific amplification of V regions
Summary
Monoclonal antibodies (mAbs) are essential tools in biological research, diagnosis and therapy, and are conventionally produced in murine hybridoma cell lines. Because hybridoma cultures can stop producing the antibody or even die, preservation of the unique epitope specificity of mAbs by rescue of the sequences encoding the antibody variable domains (V regions) is important. The availability of these sequences enables the recombinant expression of the original antibody for further applications, but opens the road for antibody engineering towards innovative diagnostic or therapeutic applications. Two predominant applications are envisaged in this review: The development of bispecific scFvs or Fab fragments for the recruitment of immune effector cells, or the generation of several mAb-isotypes (IgG, IgA, IgM) to modify effector functions This can only be facilitated through exact knowledge of the sequence information. Transient expression of recombinant mAbs in plants is a costefficient and robust method [13]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have