Abstract

AbstractDespite ongoing efforts relying on computationally intensive tree-building methods and large datasets, the deeper phylogenetic relationships between living canid genera remain controversial. We demonstrate that this issue arises fundamentally from the uncertainty of root placement as a consequence of the short length of the branch connecting the major canid clades, which probably resulted from a fast radiation during the early diversification of extant Canidae. Using both nuclear and mitochondrial genes, we investigate the position of the canid root and its consistency by using three rooting methods. We find that mitochondrial genomes consistently retrieve a root node separating the tribe Canini from the remaining canids, whereas nuclear data mostly recover a root that places the Urocyon foxes as the sister lineage of living canids. We demonstrate that, to resolve the canid root, the nuclear segments sequenced so far are significantly less informative than mitochondrial genomes. We also propose that short intervals between speciations obscure the place of the true root, because methods are susceptible to stochastic error in the presence of short internal branches near the root.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.