Abstract
Segmental dynamics is considered as a major factor governing ionic conductivity of polymerized ionic liquids (PILs), envisioned as potential electrolytes in fuel cells and batteries. Our dielectric studies performed in T-P thermodynamic space on ionene, composed of the positively charged polymer backbone and freely moving anions, indicate that other relaxation modes, completely ignored so far, can affect the charge transport in PILs as well. We found that fast mobility manifested by a secondary β process promotes segmental dynamics and thereby increases ionic conductivity making the studied material a first coupled PIL of superionic properties. The molecular mechanism underlying such a β process has been identified as Johari-Goldstein relaxation giving experimental proof that fast secondary relaxations of intermolecular origin exist also in PILs and thereby reveal a universal character.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have