Abstract

AbstractThe Haber‐Bosch process for NH3 production leads to a considerable greenhouse gas release due to the remarkable use of fossil fuels. Therefore, there is an increasing interest in developing alternative and environmental friendly approaches. Among the possible solutions, the electrocatalytic conversion of N2 has recently gained significant attention; on the other hand, not only scientific but also important technical aspects remain fundamental issues to be clarified. Particularly relevant is the need to improve the analytical protocols to ascertain that any detected NH3 is actually produced from N2 rather than from any external contaminations or partial decomposition of the catalyst itself. Here, a rotating ring‐disc electrode (RRDE) setup is used for the first time to study the N2 electroreduction process with the aim to recognize the product species formed at the disc and detected at the ring electrodes, respectively. We demonstrated that this experimental approach is effective to discern also a low‐level ammonium concentration through monitoring the ammonia oxidation peak at the ring electrode for a fast and preliminary electrocatalytic performance evaluation and to prevent false positives. The versatility of the RRDE method employed as a fingerprint of new electrocatalyst candidates could allow to reserve time and cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.