Abstract

The repair effects on deoxynucleotide radical cations of phenylpropanoid glycosides (PPGs) and their analogs, isolated from a Chinese folk medicinal herb, were studied using the pulse radiolysis technique. The radical cations of deoxynucleotides were formed by the reaction of SO 4 − with deoxynucleotides. On pulse irradiation of a nitrogen saturated deoxynucleotide aqueous solution containing 20 mM K 2S 2O 8, 200 mM t-BuOH and one of the PPGs or their analogs, the transient absorption spectra of the radical cations of nucleotide decayed with the formation of those of the radical cation of PPGs or their analogs within several tens of microseconds after electron pulse irradiation. The result indicates that deoxynucleotide radical cations can be repaired by PPGs or their analogs. The rate constants of the repair reactions were determined to be 0.48–1.1×10 9, 0.64–1.80×10 9 and 2.12–4.4×10 9 M −1. s −1 for dAMP, dGMP and dCMP radical cations respectively. It is obvious that the rate constants of the repair reaction depend on the number of phenolic hydroxyl groups contained in the PPGs and their analogs. A deeper understanding of this new repair mechanism will undoubtedly help researchers design strategies to prevent and/or intervene more effective in free radical related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.