Abstract

This paper describes the implementation of fast state-dependent Riccati equation (SDRE) control algorithms through the use of shallow and deep artificial neural networks (ANN). Several ANNs are trained to replicate an SDRE controller developed for a satellite attitude dynamics simulator (SADS) to display the technique’s efficacy. The neural controllers have reduced computational complexity compared with the original SDRE controller, allowing its execution at a significantly higher rate. One of the neural controllers was validated using the SADS in a practical experiment. The experimental results indicate that the training error is sufficiently small for the neural controller to perform equivalently to the original SDRE controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.