Abstract

We describe a new approach to ray tracing which drastically reduces the number of ray-object and ray-bounds intersection calculations by means of 5-dimensional space subdivision. Collections of rays originating from a common 3D rectangular volume and directed through a 2D solid angle are represented as hypercubes in 5-space. A 5D volume bounding the space of rays is dynamically subdivided into hypercubes, each linked to a set of objects which are candidates for intersection. Rays are classified into unique hypercubes and checked for intersection with the associated candidate object set. We compare several techniques for object extent testing, including boxes, spheres, plane-sets, and convex polyhedra. In addition, we examine optimizations made possible by the directional nature of the algorithm, such as sorting, caching and backface culling. Results indicate that this algorithm significantly outperforms previous ray tracing techniques, especially for comples environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.