Abstract
Rare events in the first-passage distributions of jump processes are capable of triggering anomalous reactions or series of events. Estimating their probability is particularly important when the jump probabilities have broad-tailed distributions, and rare events are therefore not so rare. We formulate a general approach for estimating the contribution of fast rare events to the exit probabilities in the presence of fat-tailed distributions. Using this approach, we study three jump processes that are used to model a wide class of phenomena ranging from biology to transport in disordered systems, ecology, and finance: discrete time random walks, Lévy walks, and the Lévy-Lorentz gas. We determine the exact form of the scaling function for the probability distribution of fast rare events, in which the jump process exits from an interval in a very short time at a large distance opposite to the starting point. In particular, we show that events occurring on timescales orders of magnitude smaller than the typical timescale of the process can make a significant contribution to the exit probability. Our results are confirmed by extensive numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.