Abstract
Discrete time random walks on a finite set naturally translate via a one-to-one correspondence to discrete Laplace operators. Typically, Ollivier curvature has been investigated via random walks. We first extend the definition of Ollivier curvature to general weighted graphs and then give a strikingly simple representation of Ollivier curvature using the graph Laplacian. Using the Laplacian as a generator of a continuous time Markov chain, we connect Ollivier curvature with the heat equation which is strongly related to continuous time random walks. In particular, we prove that a lower bound on the Ollivier curvature is equivalent to a certain Lipschitz decay of solutions to the heat equation. This is a discrete analogue to a celebrated Ricci curvature lower bound characterization by Renesse and Sturm. Our representation of Ollivier curvature via the Laplacian allows us to deduce a Laplacian comparison principle by which we prove non-explosion and improved diameter bounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.