Abstract

Quantum-dot Cellular automata is a promising area to implement digital systems at nano scale level. Adders and subtractors are widely used in almost every digital information processing system. This work targets to design an efficient 8-bit adder/subtractor that can perform addition as well as subtraction by using a novel control signal distribution scheme. To perform controlled inversion of inputs a novel exclusive-or gate with fewer cells is proposed. During Quantum-dot Cellular automata circuit fabrication, missing cell defects have the potential to affect the performance of a circuit. The proposed designs have higher fault resistance to missing cell defects compared to the existing state-of-the-art designs. Results demonstrate that the proposed design has (N-2) less clock phases compared to the existing state-of-the-art designs. The proposed design can be extended to implement any N-bit adder/subtractor. All the designs are designed and verified using coherence vector simulation engine in QCADesigner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.