Abstract
Fundamental understanding of the pyrolysis process plays an indispensable role in valorization of wastes and the development of novel sustainable technologies. This study introduces a novel approach by investigating the reaction mechanisms involve in Microwave-Assisted Fast Pyrolysis (MAFP) to unveil the thermal decomposition of agricultural residues: pecan nutshell (NS), sugarcane bagasse (SB), and orange seed (OS) biomasses. The holistic understanding of the pyrolysis process for these biomasses was analyzed based on the final chemical compositions and yields of bio-oil, biochar and biogas and correlated to the microwave processing conditions and feedstock’s chemical composition. The findings revealed that the bio-oil is enhanced at moderated microwave energy (<5 GJ/t) as result of endothermic reactions such as heterolytic fragmentation, Maccoll elimination, Friedel-Craft acylation, Piancatelli rearrangement and methoxylation. The maximum yield of bio-oil for protein-rich biomass was due to selective heating (Paal-Knorr pyrrole synthesis, Baeyer-Villiger oxidation, Maillard reaction, and ring conversion of γ-butyrolactone). The formation of biochar and biogas is attributed to the repolymerization of aromatic aldehydes, hydrocarbons, amines, and ethers, as well as dehydroxymethylation and dealkylation processes. This study provides a comprehensive understanding of the reaction mechanisms for several wastes using microwave pyrolysis, to establish the bases for effective valorization and agricultural waste management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.