Abstract

The compression of three-dimensional ultraspectral sounder data is a challenging task given its unprecedented size. We develop a fast precomputed vector quantization (FPVQ) scheme with optimal bit allocation for lossless compression of ultraspectral sounder data. The scheme consists of linear prediction, bit-depth partitioning, vector quantization, and optimal bit allocation. Linear prediction serves as a whitening tool to make the prediction residuals of each channel close to a Gaussian distribution, and then these residuals are partitioned based on bit depths. Each partition is further divided into several sub-partitions with various 2/sup k/ channels for vector quantization. Only the codebooks with 2/sup m/ codewords for 2/sup k/-dimensional normalized Gaussian distributions are precomputed. A new algorithm is developed for optimal bit allocation among subpartitions. Unlike previous algorithms that may yield a sub-optimal solution, the proposed algorithm guarantees to find the minimum of the cost function under the constraint of a given total bit rate. Numerical experiments upon the NASA AIRS data show that the FPVQ scheme gives high compression ratios for lossless compression of ultraspectral sounder data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call