Abstract
Based on the chaotic signal provided by a simple chaotic system, a random bit sequence with a rate of 640 Gb/s is generated through adopting the circulating exclusive-or (CXOR) post-processing method. Such a simple chaotic system is built via a slave semiconductor laser subject to optical injection of a chaotic signal originated from a master semiconductor laser under multi-path optical feedback. First, through inspecting the dependences of the time-delay-signature (TDS) and bandwidth of the chaotic signal on some key operation parameters, optimized parameters are determined for generating a high-quality chaotic signal with a large bandwidth and low TDS. Second, the high-quality chaotic signal is converted to an 8-bit digital signal by sampling with a digital oscilloscope at 80 GSa/s. Next, through adopting the CXOR post-processing method, a bit sequence with a rate of 640 Gb/s is obtained. Finally, the randomness is estimated by the National Institute of Standard Technology (NIST) Special Publication 800-22 statistical tests, and the results demonstrate that the obtained random bit sequence can pass all the NIST tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.