Abstract

<sec> Optical chaos has a wide range of applications in communications, such as secure communication, high-resolution lidar ranging, optical time domain reflectometer, and high-rate physical random bit generator.</sec><sec> In recent years, external-cavity feedback semiconductor lasers (ECLs) are the most common chaotic laser generation systems due to their characteristics of wide bandwidth, large amplitude, and simple structure, and the dynamic characteristics of chaotic signals have attracted much attention. However, limited by the relaxation oscillation of the laser, the energy of the chaotic signal directly generated by ECL is mainly concentrated at high relaxation oscillation frequency. Thus, the low-frequency component encounters the problem of energy loss.</sec><sec> In practical applications, the signal detection/acquisition device usually responds to a 3-dB low-pass filtering characteristic. Therefore, the available effective bandwidth of the chaotic signal should actually be 3-dB bandwidth. The lack of low-frequency components will limit the energy utilization rate of chaotic signals and restrict the relevant performances of chaotic applications (such as reliability and transmission of chaotic secure communication, randomness and generation rate of physical random bits, measurement accuracy and range of lidar ranging or optical time-domain reflectometer).</sec><sec> In the paper, we propose a broadband chaos generation scheme with simple structure and losing no low-frequency components. Specifically, we experimentally analyze the radio frequency (RF) spectra of the single-mode and the multi-mode output from an optical feedback Fabry-Perot (FP) semiconductor laser after and before filtering. The experimental results show that comparing with the multi-mode chaotic signal, the low-frequency energy of the single-mode chaotic spectrum is enhanced by 25 dB, and the 3-dB bandwidth of the single-mode chaotic signal can reach 6 GHz. Further theoretical analysis demonstrates that the enhancement of low-frequency component in the single-mode chaotic signal is caused by the mode-competing in multi-mode laser. It is concluded that this method can well solve the problem of low-frequency energy loss in conventional optical feedback chaotic systems, and is beneficial to improving the energy utilization rate of chaotic signals, which is of great significance for improving the performance of chaotic secure communication, random bit generation, lidar ranging, optical time domain reflectometer, and other relevant applications. </sec>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call