Abstract

Fast neutron measurements have been performed with silicon and diamond detectors at nTOF, ChipIr, and CHARM facilities. The detectors have been used in pulse mode; the deposited energy and time stamp is measured event by event for each signal above threshold. The pulsed nature of the spallation sources gives high instantaneous counting rates that dictate the use of a fast electronic chain including a current preamplifier and digital acquisition. The energy-dependent response functions of these detectors to fast neutrons can be extracted from nTOF data using time-of-flight to provide energy tagging. These measured response functions can then be used both to benchmark Monte Carlo simulations of the response functions and to interpret the measurements at ChipIR and CHARM, facilities used for the irradiation of microelectronics, where time-of-flight energy measurement at these neutron energies is not possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call