Abstract

A study of vertically polarised fast magnetoacoustic waves in a curved coronal loop is presented. The loop is modeled as a semi-circular magnetic slab in the zero plasma-β limit. The governing equations for linear waves are derived. We show that the wave mode behaviour depends on the slope of the equilibrium density profile, which is modeled as a piece-wise continuous power law curve of index α. For all profiles, except for α = −4, wave modes are not trapped in the loop and leak out into the external medium through wave tunneling. The particular case of α = −4, which corresponds to a linearly increasing Alfven speed profile, is examined in more detail as this is the only model that can support trapped wave modes. We compare the results with a straight slab model and find similar behaviour. Coupling between sausage and kink wave modes has not been found in the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.