Abstract

Using SDO/AIA 304 A channel, we study the evolution of weak intensity oscillations in a prominence like cool loop system observed at North-West limb on 7 March 2011. We use the standard wavelet tool to produce statistically significant power spectra of AIA 304 A normalized fluxes derived respectively near the apex and footpoint of the fluxtube. We find periodicities of ≈667 s and ≈305 s respectively near apex and above footpoint with significance level >98 %. Observed statistically significant periodicities in the tube of projected length ≈170 Mm and width ≈10 Mm, are interpreted as most likely signature of evolution of various harmonics of tubular fast magnetoacoustic waves. Sausage modes are unlikely though they are compressive as they need bulky and highly denser loop system for their evolution for sustaining such large periods. We interpret the observed periodicities as multiple harmonics (fundamental and first) of fast magnetoacoustic kink waves that can generate some weak density perturbations (thus intensity oscillations) in the tube and can be observed pertaining to periodic variation in plasma column depth as tube is oblique in projection with respect to line-of-sight. The period ratio P1/P2=2.18 is observed in the fluxtube, which is the signature of the magnetic field divergence of the cool loop system. We estimate tube expansion factor as 1.27 which is typical of EUV bipolar loops in the solar atmosphere. We estimate the lower bound average magnetic fields ranging from ≈9 to 90 Gauss depending upon typical densities as 109–1011 cm−3 in the observed prominence-like cool loop system. We also observe the first signature of lowering fundamental mode period by a factor 0.85 due to cooling of this loop system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.