Abstract

Variable-fidelity optimization (VFO) can be efficient in terms of the computational cost when compared with traditional approaches, such as gradient-based methods with adjoint sensitivity information. In variable-fidelity methods, the direct optimization of the expensive high-fidelity model is replaced by iterative re-optimization of a physics-based surrogate model, which is constructed from a corrected low-fidelity model. The success of VFO is dependent on the reliability and accuracy of the low-fidelity model. In this paper, we present a way to develop a fast and reliable low-fidelity model suitable for aerodynamic shape of transonic wings. The low-fidelity model is component based and accounts for the zero-lift drag, induced drag, and wave drag. The induced drag can be calculated by a proper method, such lifting line theory or a panel method. The zero-lift drag and the wave drag can be calculated by two-dimensional flow model and strip theory. Sweep effects are accounted for by simple sweep theory. The approach is illustrated by a numerical example where the induced drag is calculated by a vortex lattice method, and the zero-lift drag and wave drag are calculated by MSES (a viscous-inviscid method). The low-fidelity model is roughly 320 times faster than a high-fidelity computational fluid dynamics models which solves the Reynolds-averaged Navier-Stokes equations and the Spalart-Allmaras turbulence model. The responses of the high-and low-fidelity models compare favorably and, most importantly, show the same trends with respect to changes in the operational conditions (Mach number, angle of attack) and the geometry (the airfoil shapes).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call