Abstract

In some dynamic magnetic resonance imaging (MRI) applications, the sample is still, and only the signal intensity changes with time. For such cases, the keyhole imaging principle can be used. In standard keyhole imaging, a low-frequency image signal is acquired, using a limited number of phase-encoding steps, which correspond to the rectangular sampling region in the k-space center. However, such a region practically never coincides with the position of the k-space points, which carry the most relevant low-frequency image information. In this paper we propose an improved keyhole method, which allows dynamic acquisition of a low-frequency image signal from selected most relevant k-space points via fast imaging mechanisms. Dynamic data acquisition is executed in the presence of time-varying magnetic-field (MF) gradients after single sample excitation. Special care has been taken in the design of the gradient sequence to minimize gradient load. This improved keyhole imaging method has been considered theoret...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call