Abstract

A fast iterative solving method of various types of fuzzy relational equations is proposed. This method is derived by eliminating a redundant comparison process in the conventional iterative solving method (Pedrycz, 1983). The proposed method is applied to image reconstruction, and confirmed that the computation time is decreased to 1/39 - 1/45 with the compression rate of 0.0625. Furthermore, in order to make any initial solution converge on a reconstructed image with good quality, a new cost function is proposed. Under the condition that the compression rate is 0.0625, it is confirmed that the root mean square error of the proposed method decreases to 24.00% and 86.03% compared with those of the conventional iterative method and a non iterative image reconstruction method (Nobuhara, 2001), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.