Abstract
In scientific computing, the problem of finding an analytical representation of a given function \(f: \Omega \subseteq \mathbb {R}^m \longrightarrow \mathbb {R},\mathbb {C}\) is ubiquitous. The most practically relevant representations are polynomial interpolation and Fourier series. In this article, we address both problems in high-dimensional spaces. First, we propose a quadratic-time solution of the Multivariate Polynomial Interpolation Problem (PIP), i.e., the N(m, n) coefficients of a polynomial Q, with \(\deg (Q)\le n\), uniquely fitting f on a determined set of generic nodes \(P\subseteq \mathbb {R}^m\) are computed in \(\mathcal {O}(N(m,n)^2)\) time requiring storage in \(\mathcal {O}(mN(m,n))\). Then, we formulate an algorithm for determining the N(m, n) Fourier coefficients with positive frequency of the Fourier series of f up to order n in the same amount of computational time and storage. Especially in high dimensions, this provides a fast Fourier interpolation, outperforming modern Fast Fourier Transform methods. We expect that these fast and scalable solutions of the polynomial and Fourier interpolation problems in high-dimensional spaces are going to influence modern computing techniques occurring in Big Data and Data Mining, Deep Learning, Image and Signal Analysis, Cryptography, and Non-linear Optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.