Abstract

The interface between transition-metal oxides and aqueous solutions plays an important role in biogeochemistry and photoelectrochemistry, but the atomistic structure is often elusive. Here we report on the surface geometry, solvation structure, and thermal fluctuations of the hydrogen bonding network at the hematite (001)-water interface as obtained from hybrid density functional theory-based molecular dynamics. We find that the protons terminating the surface form binary patterns by either pointing in-plane or out-of-plane. The patterns exist for about 1 ps and spontaneously interconvert in an ultrafast, solvent-driven process within 50 fs. This results in only about half of the terminating protons pointing toward the solvent and being acidic. The lifetimes of all hydrogen bonds formed at the interface are shorter than those in pure liquid water. The solvation structure reported herein forms the basis for a better fundamental understanding of electron transfer coupled to proton transfer reactions at this important interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call